

Metal Additive Manufacturing Challenges & Opportunities

@amplab_unibham #3DMX

Prof. Moataz Attallah

Director, Advanced Materials & Processing Lab (AMPLab)

Interdisciplinary Research Centre, School of Metallurgy & Materials

© AMPLab 2015

Additive Manufacturing The Third Industrial Revolution

Additive Manufacturing The Future: Great Expectations. Will It Deliver?

Metal Additive Manufacturing Different Technologies

Description Powder bed/layer SLS, SLM, DMLS, EBSM

Selective Laser Melting (SLM) Selective Laser Sintering (SLS) Direct Metal Laser Sintering (DMLS) Electron Beam Selective Melting (EBSM/Arcam)

Direct deposition LENS, DLD, DLF, Cladding WAAM, DLD, EBFFF

Laser Engineered Net-Shaping (LENS) Direct Laser Deposition/Fabrication (DLD/DLF) Wire Arc Additive Manufacturing (WAAM) Electron Beam free-form fabrication (EBFFF)

Additive Manufacturing Distribution of Metal & Plastic Technologies (EU)

© AMPLab 2015 ESA AM Harmonisation, 2015

Challenges Facing Metal AM Technology Barriers

- Component costs are too high when compared with established manufacturing technology (e.g. casting, forging).
- Deposition rates of processes are too slow, making a weak business case (depreciation vs. build rates).
- AM machines are expensive, not autonomous, have size constraints.
- Powders and resins are too expensive for part mass production and in the case of metals not tailored/designed to AM (80% of research focuses on Ti-64, IN718, & AlSiMg Alloys).
- □ **Insufficient/changing data** to construct business models.
- □ Product **quality is inconsistent** between batches/machines.
- □ Lack of in-line **monitoring/control**.
- Post-processing (e.g. HIPping, surface finishing, or machining) is always required.

 $\ensuremath{\mathbb{C}}$ AMPLab 2015

Challenges Facing Metal AM In Other Words*...

© AMPLab 2015 *Source Unknown

Deciding on AM Research Strategy Weighing the Risks and Opportunities

Companies have to weigh the risks and opportunities in AM research. The decision can be one of the following:

1. Do nothing; wait and see (e.g. Russia).

- +: Investment in metal AM involves a high risk in a technology that has not yet provided a noticeable impact.
- -: The risk of missing an opportunity!
- 2. Develop an **individual long-term strategy (GE)**
 - +: Protect any potential IP, develop a strategy that matches the company's products.
 - -: Resources, expensive!
- 3. Develop strategy involving academic & industrial (supplychain) partners (Rolls-Royce, Safran):
 - +: Sharing the cost, effort, knowledge, and resources.
 - : The risk of not securing the IP.

AM Research Strategies 1-The One-Shot Approach

- □ Identify a component;
- acquire the raw material;
- □ use the machine manufacturer approved parameters;
- □ <u>standard</u> post processing (e.g. HIPping)
- perform component testing (<u>in-service</u> conditions, static/ dynamic) and validation (micro CT, mechanical testing); FE simulations.
 - +: Cost-effective, rapid TRL/MCRL qualification, marketing/PR advantage (using a trendy technology)
 - -: Requires approval following any change (component design, supplier, etc...), not standardised/transferable to other components, redundancy.

AM Research Strategies Thales Alenia*: One-Shot Approach (Satellites/Low batch)

© AMPLab 2015 *ESAAM Harmonisation, 2015

AM Research Strategies Airbus UK*: One Shot Approach (Satellites/Low batch)

© AMPLab 2015 *ESAAM Harmonisation, 2015

AM Research Strategies 2-Multi-Phase Approach (MTU Aero*)

Phase 1: Tooling & Development Hardware

Manufacturing of Tooling, Development Hardware

Phase 2: Substitution

Cost effective Manufacturing of raw Parts Substitution of Castings "Learner" for SLM Process Qualifying

Phase 3: New AM Design

Manufacturing of functional Structures to reduce Weight and Cost

© AMPLab 2015 *J. Bamberg, K.H. Dusel, W. Satzger , 2014

AM Research Strategies 3-Standard Qualification Approach

- A comprehensive approach that researches <u>all the process</u> <u>factors</u> (e.g. process parameters, platforms, powder quality & recyclability, post-processing, mechanical properties, FE-simulations/process modelling, etc...
 - +: Better understanding of the process, applicability to transfer to various components, standardised.
 - -: Expensive, time-consuming.

AM Research Strategies AvioGE Standard Qualification (y-TiAl Blade)

 $\ensuremath{\mathbb{C}}$ AMPLab 2015

AM Research Strategy Airbus Standard Qualification (Ti-64)

AM Research Strategies Airbus (Business Advantage of Standard Qualification)

AM Research Strategies Standard Qualification AM Products

GE Aviation Leap Engine Nozzle 10⁵ parts required by 2020 3% wt. reduction 2.5 x endurance Cost (mass production)?!

Rolls-Royce Trent XWB OGV

Vanes made by Arcam + Welded Test flight in 2015 Properties? Weight reduction? Cost (mass production)?!

© AMPLab 2015

Metal Additive Manufacturing Research Challenges Investigated by UoB/AMPLab

- Impact of powder feedstock (consistency, quality, performance, repeatability, and security) on properties.
- Process modelling using computationally non-CPU intensive codes.
- Non-destructive evaluation, in-situ monitoring, 3D scanning, Micro CT.
- Residual stress: measurement, management and control.
- □ Microstructure-Property control (e.g. property optimisation).
- □ Surface finishing and post-processing (e.g. HIPping).

BIRMINGHAN

Addressing AM Research Challenges Powder Quality & Impact on Properties

- Significant disparities can exist in powder morphology, flowability, apparent/tap density, chemistry (N,O,C), etc....
- Repeatability/consistency/recyclability of powder are concerns.
- Limited data is available on the impact of powder characteristics on the product performance.

© AMPLab 2015

Addressing AM Research Challenges FE Modelling of Residual Stress & Temperature

- A useful tool to predict the temperatures, microstructural development, residual stress, and properties.
- The challenge is to create models that produce 'reasonable' predictions, with limited 'fudge factors' (fitting parameters), and low computational time.

Addressing AM Research Challanges An Holistic Approach to Product Qualification

□ **Aim:** To establish SLM processing route for aerospace components from the high temperature Ni-superalloy CM247LC

Main Findings:

Understand the influence of the process parameters, and post-processing heat treatments, to minimise the defects, improve microstructure and maximise mechanical properties.

BIRMINGHAM

Additive Manufacturing Addressing the Challenges

- Defect formation, characterisation & mitigation
- Post-processing (using HIPping)
- Tooling development using AM
- Micro and macro modelling of A
- Multi-functional AM
- Microstructural control
- □ Large scale deposition

© AMPLab 2015

Additive Manufacturing Key Technology/Materials challenges

- □ Alloy development for ALM.
- Physics-based tool path (heat source) optimisation.
- □ Laser-powder interaction: physics and thermodynamics.
- Difficult-to-ALM materials: tungsten, single crystal Nisuperalloys, refractories, Al-alloys, gum metal, SMAs, silicides, composites, Ni-superalloys, γ-TiAl, etc...
- □ Novel applications: sensors embedding, composites, etc...

© AMPLab 2015

Additive Manufacturing Research Roadmap

Summary & Conclusions

Conclusions Author's View

- There are several models for a research strategy development in Additive Manufacturing.
- The MTU's 3-phase strategy provides a balanced approach for AM technology adoption.
- The standard qualification approach develops knowledge & standards that are applicable to various components in the business, provided that the business need exists.
- The one-shot approach may help the company score immediate business/marketing image target.
- Technology challenges can only be addressed via a balanced modelling & experimentation approach.

 $\ensuremath{\mathbb{C}}$ AMPLab 2015

Technology Success

"For a successful technology, *reality* must take precedence over *public relations*, for nature cannot be fooled."

Richard Feynman, 1986

© AMPLab 2015

Collaborations & Funding 2011-2015

References

□ <u>Moataz Attallah</u>

 $\ensuremath{\mathbb{C}}$ AMPLab 2015

UNIVERSITY^{OF} BIRMINGHAM

Thank You Questions?

Follow us @amplab_unibham

